The bounded linear operators on the space of rd o 空間上的有界線性算子
Best approaching of bounded linear operator in reproducing kernel space 再生核空間的有界線性算子的最佳逼近
Bounded linear operator 有界線性算子
Let h be an infinite dimensional complex hilbert space , b ( h ] the banach algebra of all bounded linear operators on h , and s ( h ) the space of all symmetric operators on h . let l be a real linear , weakly continuous rank one preserver of s ( h ) 設h是無限維復的hilbert空間, b ( h )為h上的有界線性算子全體組成的banach代數, s ( h )為h上的對稱算子全體
We study the spectral theory of bounded linear operators and the characterization of ci operators by way of mbekhta ' s subspaces . we find a series of operators which are ci operators by the defination and the characterization of ci operators given by weibang gong in [ 3 ] 利用mbekhta子空間研究一般有界線性算子的譜理論以及描述ci算子的特征;用ci算子的定義和判定方法尋找更廣泛的ci算子;同時還討論了廣義逆算子和ci算子及mbekhta子空間的關系。